Non-Abelian charge quantisation and the Bohr-Wilson-Sommerfeld condition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 181839
(http://iopscience.iop.org/0305-4470/18/11/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:46

Please note that terms and conditions apply.

Non-Abelian charge quantisation and the Bohr-Wilson-Sommerfeld condition

F J Vanhecke
Departamento de Física, Universidade Federal do Rio Grande do Norte, 59000 Natal-RN, Brasil

Receivẹd 9 April 1984, in final form 3 December 1984

Abstract

The quantisation of the non-Abelian charge of a point-like particle is shown to arise from the sws condition in the pre-quantisation scheme of Kostant and Souriau.

1. Introduction

In generalised Kaluza-Klein theories one assumes a spontaneous fibration of a higherdimensional space B in a local product of ordinary spacetime M with a compact 'internal' N-dimensional fibre F. Usually F is taken to be a Lie group G or a right coset space $H \backslash G$. The fibration is spontaneous in the sense that the field equations for the metric on B have a 'ground-state' solution given by the direct sum of a metric on M and a G-invariant metric on F. Thus, the generators of G define Killing vectors on B and a right action of G. Such metrics incorporate Yang-Mills potentials of a subgroup of G and generalise the five-dimensional Kaluza metric to higher dimensions. From the Einstein equations on B, one obtains, for the generalised Kaluza-Klein metric, field equations which lead to a theory of coupled Einstein, Yang-Mills and scalar fields in four dimensions; this 'dimensional reduction' can be obtained either by working in a frame where the Kaluza-Klein metric becomes independent of the internal coordinates, or by performing some averaging procedure over the fibres \dagger.

If matter fields or wavefunctions on B are also considered and subjected to invariant wave equations, following Klein's proposal, one finds that such fields describe in four dimensions particles with quantised charges and masses. In particular, Klein's method can be applied to a wavefunction Ψ in $4+N$ dimensions, subjected to the invariant equation

$$
\begin{equation*}
\left[\Delta+(m c / h)^{2}\right] \Psi(X)=0 \tag{1.1}
\end{equation*}
$$

where Δ is the Laplace operator on B with the Kaluza-Klein metric. In Klein's paper, one had $N=1$ and $m=0$, leading to a $\mathrm{U}(1)$ bundle for B and to the quantisation rules $q_{n}=n(l / a) \varepsilon, m_{n}=|n| \hbar / a c$, where $n=0, \pm 1, \pm 2, \ldots, l$ is the Planck length, a is the length of the internal fibre and ε is the electron charge. In such a framework Weinberg (1984) has given a prescription for calculating the gauge coupling constants in the general case.

+ For all additional details and references to the original literature see Cho (1975), Cho and Freund (1975), Orzalesi (1981), Witten (1981) and Salam and Strathdee (1982). For more mathematically oriented remarks see Coqueraux and Jadczyk (1983) and Coqueraux (1983).

In this paper, it is shown that a quantisation of charge also emerges within a different framework, which is pre-quantum mechanical: namely we show that the prequantisation scheme of Kostant and Souriau implies the quantisation of the charges. Closely related to our work is that of Duval (1981) and Duval and Horvathy (1982) \dagger, the main difference being that we emphasise the realisation of the Poisson algebra of the observables in the Hilbert space of square integrable functions on phase space (van Hove 1951).

In this framework, matter is described by (classical) point-like particles which move along time-like geodesics on B and, in order to interpret the non-Abelian charges as components of the momentum in $4+N$ dimensions, it is assumed that the fibre F is the gauge group G itself, so that B is a principal fibre bundle over spacetime M with structure group G. The gauge group G is taken semi-simple and compact.

In § 2 the well known equations of motion for such dynamical systems are given (Cho 1975, Orzalesi and Pauri 1982, Vanhecke 1982) and in § 3 the Hamiltonian formalism and the reduction of phase space due to the presence of symmetry are discussed. In the last section it is shown how the Kostant-Souriau pre-quantisation scheme (Woodhouse 1980) implies the quantisation of the charges. Some formulae on the non-holonomic formulation of the Lagrangian and Hamiltonian formalism are given in appendix 1 ; the mentioned pre-quantisation scheme is briefly outlined in appendix 2 and in appendix 3 some comments are made on the ansatz for the $4+N$ dimensional metric and on the 'spontaneous fibration' aspect of the theory.

2. The equations of motion

Let B be a principal fibre bundle over spacetime M with projection $\pi: B \rightarrow M$ and structure group G. In a local gauge ϕ the points X, Y, \ldots of B are given by $X=\phi(x, \xi)$, where $x=\pi(X)$ is a point of M with coordinates $x^{i}(i=0,1,2,3)$ and where ξ is a group element with dimensionless canonical coordinates $\xi^{\alpha}(\alpha=1,2, \ldots, N)$ defined by $\xi=\exp \left(\xi^{\alpha} T_{\alpha}\right)$. The generators T_{α} of the Lie algebra $\mathscr{L}(\mathrm{G})$ obey

$$
\begin{equation*}
\left[T_{\alpha}, T_{\beta}\right]=f_{\alpha \beta}^{\gamma} T_{\gamma} \tag{2.1}
\end{equation*}
$$

and, since G is assumed to be semi-simple and compact, the Killing form

$$
\begin{equation*}
\eta_{\alpha \beta}=f_{\alpha \mu}^{\nu} f_{\beta \nu}^{\mu} \tag{2.2}
\end{equation*}
$$

is non-degenerate and negative definite. The group G acts globally on the right on $B:(\gamma \in \mathrm{G})$

$$
\begin{equation*}
R_{\gamma}: B \rightarrow B: X=\phi(x, \xi) \rightarrow R_{\gamma}(X)=\phi(x, \xi \cdot \gamma)=X \cdot \gamma \tag{2.3}
\end{equation*}
$$

This action is generated by the fundamental vector fields

$$
\begin{equation*}
\boldsymbol{e}_{\alpha}(X)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(X \cdot \gamma_{\alpha}(t)\right)\right|_{t=0} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{\alpha}(t)=\exp \left(t T_{\alpha}\right) \tag{2.5}
\end{equation*}
$$

[^0]The bundle is endowed with a connection defined by the 1 -forms $\omega^{\alpha}(X)$, given in a local gauge by

$$
\begin{equation*}
\omega^{\alpha}(x, \xi)=\operatorname{Ad}_{\beta}^{\alpha}\left(\xi^{-1}\right) A_{i}^{\beta}(x) \mathrm{d} x^{i}+L^{\alpha}{ }_{\beta}\left(\xi^{-1}, \xi\right) \mathrm{d} \xi^{\beta}, \tag{2.6a}
\end{equation*}
$$

where $A_{i}^{\beta}(x)$ are the gauge potentials and where

$$
L^{\alpha}{ }_{\beta}(\xi, \zeta)=\partial(\xi \cdot \zeta)^{\alpha} / \partial \zeta^{\beta} \quad R^{\alpha}{ }_{\beta}(\xi, \zeta)=\partial(\zeta \cdot \xi)^{\alpha} / \partial \zeta^{\beta}
$$

define the left and right auxiliary matrices such that

$$
\operatorname{Ad}(\xi)=L\left(\xi, \xi^{-1}\right) R\left(\xi^{-1}, 1\right)=R\left(\xi^{-1}, \xi\right) L(\xi, 1)
$$

is the $N \times N$ adjoint representation of G in $\mathscr{L}(\mathrm{G})$. These 1 -forms together with

$$
\begin{equation*}
\boldsymbol{\omega}^{i}(x, \xi)=\mathrm{d} \boldsymbol{x}^{i} \tag{2.7}
\end{equation*}
$$

form a basis of cotangent space $T_{X}^{*} B$ with dual

$$
\begin{align*}
& \boldsymbol{e}_{\alpha}(x, \xi)=\left(\partial / \partial \xi^{\beta}\right) L_{\alpha}^{\beta}(\xi, 1) \tag{2.8a}\\
& \boldsymbol{e}_{i}(x, \xi)=\boldsymbol{\partial} / \partial x^{i}-\left(\partial / \partial \xi^{\beta}\right) R_{\alpha}^{\beta}(\xi, 1) A_{i}^{\alpha}(x) . \tag{2.8b}
\end{align*}
$$

The structure functions of the anholonomic basis are given by

$$
\begin{align*}
& \mathrm{d} \boldsymbol{\omega}^{i}=0 \tag{2.9a}\\
& \mathrm{~d} \boldsymbol{\omega}^{\alpha}=-\frac{1}{2} f_{\beta \gamma}^{\alpha} \boldsymbol{\omega}^{\beta} \wedge \boldsymbol{\omega}^{\gamma}+\frac{1}{2} \Omega_{i j}^{\alpha}(\boldsymbol{X}) \boldsymbol{\omega}^{i} \wedge \boldsymbol{\omega}^{j} \tag{2.9b}
\end{align*}
$$

where the curvature is given in a local gauge by

$$
\begin{equation*}
\Omega_{i j}^{\alpha}(x, \xi)=\operatorname{Ad}_{\beta}^{\alpha}\left(\xi^{-1}\right) F_{i j}^{\beta}(x) \tag{2.10}
\end{equation*}
$$

with field strengths

$$
\begin{equation*}
F_{i j}^{\alpha}=\partial_{i} A_{j}^{\alpha}-\partial_{j} A_{i}^{\alpha}+f_{\beta \gamma}^{\alpha} A_{i}^{\beta} A_{j}^{\gamma} . \tag{2.11}
\end{equation*}
$$

The non-Abelian Kaluza-Klein metric in bundle space is given by (Cho 1975) \dagger

$$
\begin{equation*}
g(X)=g_{i j}(\pi(X)) \omega^{i} \otimes \omega^{j}+a^{2} \eta_{\alpha \beta} \omega^{\alpha} \otimes \omega^{\beta} \tag{2.12}
\end{equation*}
$$

where a is a constant with the dimensions of length. Its Riemannian curvature scalar, constant on each fibre, reads

$$
\begin{equation*}
\mathscr{R}(X)=R(x)+N / 4 a^{2}+\frac{1}{4} a^{2} \eta_{\alpha \beta} F_{i j}^{\alpha}(x) F^{i j \beta}(x) \tag{2.13}
\end{equation*}
$$

where $R(x)$ is the Riemannian curvature scalar of the metric $g_{i j}(x)$ in spacetime M.
The field action is taken as

$$
\begin{equation*}
S_{\text {field }}=\frac{c^{3}}{16 \pi \kappa} \int \mathrm{~d}^{4} x|\operatorname{det} g(x)|^{1 / 2}(\mathscr{R}(x)-2 \lambda) \tag{2.14}
\end{equation*}
$$

where κ is the gravitational coupling constant, c is the speed of light and λ is a cosmological constant introduced to eventually cancel with the group curvature $N / 4 a^{2}$ appearing in (1.13).

The matter is described by point-like particles with a typical trajectory $Z(u)$-locally $z^{i}(u), \zeta^{\alpha}(u)$-where u is an evolution parameter. The action is proportional to the

[^1]$(4+N)$-dimensional arc length:
\[

$$
\begin{equation*}
S_{\text {matter }}=-m c \int \mathrm{~d} \sigma \tag{2.15}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
\mathrm{d} \sigma / \mathrm{d} u=\dot{\sigma}=\left|g_{z}[\dot{\boldsymbol{Z}}, \dot{\boldsymbol{Z}}]\right|^{1 / 2} \tag{2.16}
\end{equation*}
$$

where $\dot{\boldsymbol{Z}}=\mathrm{d} \boldsymbol{Z} / \mathrm{d} u$ is the velocity. The trajectories of the particles are the geodesics in bundle space (Orzalesi and Pauri 1982, Vanhecke 1982).

The explicit form of the equations of motion is most easily obtained from the formulae of appendix 1 using the non-holonomic components of the velocities:

$$
\begin{equation*}
v^{a}=\left(\boldsymbol{\omega}^{a}, \dot{\boldsymbol{Z}}\right) \quad a=i, \alpha \tag{2.17}
\end{equation*}
$$

and the Lagrangian

$$
\begin{equation*}
L=-m c\left(g_{i j}(z) v^{i} v^{j}+a^{2} \eta_{\alpha \beta} v^{\alpha} v^{\beta}\right)^{1 / 2} . \tag{2.18}
\end{equation*}
$$

The momentum \boldsymbol{p} is defined by:

$$
\begin{equation*}
(\boldsymbol{p}, \boldsymbol{w})=\left.\frac{\mathrm{d}}{\mathrm{~d} t} L(Z, \boldsymbol{v}+\boldsymbol{t w})\right|_{t=0} \tag{2.19}
\end{equation*}
$$

and its holonomic $p_{a}=\left(\boldsymbol{p}, \boldsymbol{\partial} / \partial Z^{a}\right)$ and non-holonomic components $r_{a}=\left(\boldsymbol{p}, \boldsymbol{e}_{a}\right)=$ $\partial L / \partial v^{a}$ are related by

$$
\begin{align*}
& r_{i}=p_{i}-p_{\alpha} R^{\alpha}{ }_{\beta}(\zeta, 1) A_{i}^{\beta}(z) \tag{2.20a}\\
& r_{\alpha}=p_{\beta} L_{\alpha}^{\beta}(\zeta, 1) . \tag{2.20b}
\end{align*}
$$

In terms of the velocities, the non-holonomic components read:

$$
\begin{align*}
& r_{i}=-(m c / \dot{\sigma}) g_{i j}(z) v^{j} \tag{2.21a}\\
& r_{\alpha}=-(m c / \dot{\sigma}) a^{2} \eta_{\alpha \beta} \nu^{\beta} . \tag{2.21b}
\end{align*}
$$

The geodesic equations are

$$
\begin{align*}
& m c\left[\frac{\mathrm{~d}}{\mathrm{~d} u}\left(\frac{v^{i}}{\dot{\sigma}}\right)+\left\{\begin{array}{c}
i \\
p q
\end{array}\right\} \frac{v^{p} v^{q}}{\dot{\sigma}}\right]=-r_{\alpha} \mathrm{Ad}_{\beta}^{\alpha}\left(\zeta^{-1}\right) F_{j}^{i \beta}(z) v^{j} \tag{2.22a}\\
& \mathrm{~d} r_{\alpha} / \mathrm{d} u=0 \tag{2.22b}
\end{align*}
$$

In order to relate these equations in an unambiguous way to the non-Abelian Lorentz equation and charge conservation it is necessary to consider the field equations

$$
\begin{align*}
& R_{i j}-\frac{1}{2} R g_{i j}+\left(\lambda-N / 8 a^{2}\right) g_{i j}+\left(8 \pi \kappa / c^{3}\right) T_{i j}=0 \tag{2.23a}\\
& \nabla_{i} \mathscr{F}^{i j \alpha}=(4 \pi / c) J^{J \alpha} \tag{2.23b}
\end{align*}
$$

where we have introduced the field strengths

$$
\begin{equation*}
\mathscr{F}_{i j}{ }^{\alpha}=e F_{i j}{ }^{\alpha} \tag{2.24}
\end{equation*}
$$

with the universal \dagger unit of charge

$$
\begin{equation*}
e=a c^{2} / 2 \sqrt{\kappa} \tag{2.25}
\end{equation*}
$$

\dagger The charge e is 'universal' in the sense that it does not depend on the properties of a specific particle, but only on the universal constants c and κ and on the size a of the fibre.

This unit of charge is introduced so that the Yang-Mills part of the energy-momentum tensor in ($2.23 a$) reads

$$
\begin{equation*}
T_{i j}{ }^{\mathrm{YM}}=-(1 / 4 \pi c)\left(\frac{1}{4} g_{i j} \mathscr{F}_{p q}{ }^{\alpha} \mathscr{F}^{p q \beta}-\mathscr{F}_{i p}{ }^{\alpha} \mathscr{F}_{j}^{p \beta}\right) \eta_{\alpha \beta} . \tag{2.26}
\end{equation*}
$$

The matter contribution to the energy-momentum tensor is as usual:

$$
\begin{equation*}
T_{i j}^{\text {matter }}(x)=|\operatorname{det} g(x)|^{-1 / 2} \int \mathrm{~d} u m c \frac{v_{i} v_{j}}{\dot{\sigma}} \delta^{4}(x-z(u)) . \tag{2.27}
\end{equation*}
$$

The derivative in ($2.23 b$) is a doubly covariant derivative and the current is expressed as:

$$
\begin{equation*}
J^{j \alpha}(x)=|\operatorname{det} g(x)|^{-1 / 2} \int \mathrm{~d} u c I^{\alpha}(u) v^{j} \delta^{4}(x-z(u)) \tag{2.28}
\end{equation*}
$$

with

$$
\begin{align*}
& I^{\alpha}(u)=\operatorname{Ad}_{\beta}^{\alpha}(\zeta(u)) Q^{\beta}(u) \tag{2.29a}\\
& Q^{\alpha}(u)=e \frac{m c^{2}}{e^{2} / a} k^{\alpha}(u) \tag{2.29b}\\
& k^{\alpha}(u)=-a v^{\alpha} / \dot{\sigma} . \tag{2.29c}
\end{align*}
$$

The 'intrinsic' or 'body-fixed' charge Q^{α} is related to the momentum by

$$
\begin{equation*}
r_{\alpha}=\eta_{\alpha \beta}(e / c) Q^{\beta} \tag{2.30}
\end{equation*}
$$

From the equations of motion it follows that the dimensionless k^{α} are constant so that along the trajectory

$$
\begin{equation*}
\mathrm{d} \sigma^{2}=\left(1-\eta_{\alpha \beta} k^{\alpha} k^{\beta}\right)^{-1} \mathrm{~d} s^{2} \tag{2.31}
\end{equation*}
$$

and since $\eta_{\alpha \beta}$ is negative definite $\mathrm{d} \sigma^{2}$ and $\mathrm{d} s^{2}$ have the same sign. We may thus choose the four-dimensional arc length as evolution parameter with

$$
\begin{equation*}
\dot{\sigma}=\left(1-\eta_{\alpha \beta} k^{\alpha} k^{\beta}\right)^{-1 / 2} \tag{2.32}
\end{equation*}
$$

The equations of motion are finally written as

$$
m^{\prime} c^{2}\left(\frac{\mathrm{~d}}{\mathrm{~d} s} v^{i}+\left\{\begin{array}{c}
i \tag{2.33a}\\
p q
\end{array}\right\} v^{p} v^{q}\right)=-\eta_{\alpha \beta} I_{\mathscr{F}_{j}^{i \beta}}(z) v^{j}
$$

and

$$
\begin{equation*}
\mathrm{d} Q^{\alpha} / \mathrm{d} s=0 \tag{2.33b}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathrm{d} I^{\alpha} / \mathrm{d} s+f_{\beta \gamma}^{\alpha} A_{i}^{\beta}(z) v^{i} I^{\gamma}=0 . \tag{2.33c}
\end{equation*}
$$

It should be noticed that the 'dressed' mass m ',

$$
\begin{equation*}
m^{\prime}=m\left(1-\eta_{\alpha \beta} k^{\alpha} k^{\beta}\right)^{1 / 2} \tag{2.34}
\end{equation*}
$$

also appears in the expression of the energy-momentum tensor

$$
T_{i j}^{\text {matter }}(x)=|\operatorname{det} g(x)|^{-1 / 2} \int \mathrm{~d} s m^{\prime} c v_{i} v_{j} \delta^{4}(x-z(s))
$$

Formally I^{α} can be obtained as an ordered integral along the spacetime trajectory of the 1 -form $T_{\alpha} A_{i}^{\alpha}(x) \mathrm{d} x^{t}$. Substitution of the obtained result in (2.33a) leads to a formal integro-differential equation (Vanhecke 1982).

3. Hamiltonian formalism-reduction of phase space

We limit ourselves to study the motion of a test particle in a fixed field configuration so that the configuration space of the system is the bundle space B itself. While the Lagrangian formalism is built upon the tangent bundle $T B$, with typical points (Z, v), the Hamiltonian approach is defined in phase space which is the cotangent bundle $T^{*} B$ with points $P=(Z, p) \dagger$. Canonical and non-canonical coordinates of points in phase space are given by ($z^{i}, \zeta^{\alpha}, p_{i}, p_{\alpha}$) and ($z^{i}, \zeta^{\alpha}, r_{i}, r_{\alpha}$). The holonomic basis of $T_{P}\left(T^{*} B\right)$ associated with the non-canonical coordinates is formed by the vector fields \ddagger

$$
\begin{array}{cccc}
\left|\partial / \partial z^{i}\right\rangle & \left|\partial / \partial \zeta^{\alpha}\right\rangle & \left|\partial / \partial r_{i}\right\rangle & \left|\partial / \partial r_{\alpha}\right\rangle \tag{3.1}
\end{array}
$$

It will be more convenient to use the anholonomic basis

$$
\begin{align*}
& \left|e_{i}\right\rangle=\left|\partial / \partial z^{i}\right\rangle-\left|\partial / \partial \zeta^{\alpha}\right\rangle R_{\beta}^{\alpha}(\zeta, 1) A_{i}^{\beta}(z) \tag{3.2a}\\
& \left|e_{\alpha}\right\rangle=\left|\partial / \partial \zeta^{\beta}\right\rangle L_{\alpha}^{\beta}(\zeta, 1) \tag{3.2b}\\
& \left|\partial / \partial r_{i}\right\rangle \quad\left|\partial / \partial r_{\alpha}\right\rangle . \tag{3.2c}
\end{align*}
$$

The corresponding dual bases of $T_{P}^{*}\left(T^{*} B\right)$ are

$$
\begin{equation*}
\left\langle\mathrm{d} z^{i}\right| \quad\left\langle\mathrm{d} \zeta^{\alpha}\right| \quad\left\langle\mathrm{d} r_{i}\right| \quad\left\langle\mathrm{d} r_{\alpha}\right| \tag{3.3}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle\omega^{i}\right|=\left\langle\mathrm{d} z^{i}\right| \tag{3.4a}\\
& \left\langle\omega^{\alpha}\right|=\mathrm{Ad}^{\alpha}{ }_{\beta}\left(\zeta^{-1}\right) A_{i}{ }^{\beta}(z)\left\langle\mathrm{d} z^{i}\right|+L^{\alpha}{ }_{\beta}\left(\zeta^{-1}, \zeta\right)\left\langle\mathrm{d} \zeta^{\beta}\right| \tag{3.4b}\\
& \left\langle\mathrm{d} r_{i}\right| \quad\left\langle\mathrm{d} r_{\alpha}\right| . \tag{3.4c}
\end{align*}
$$

The canonical symplectic potential on phase space reads

$$
\begin{equation*}
\langle\theta|=r_{i}\left\langle\omega^{i}\right|+r_{\alpha}\left\langle\omega^{\alpha}\right| \tag{3.5}
\end{equation*}
$$

and the symplectic 2 -form is given by

$$
\begin{align*}
\Sigma= & -\mathrm{d}\langle\theta|=\left\langle\omega^{i}\right| \wedge\left\langle\mathrm{d} r_{i}\right|+\left\langle\omega^{\alpha}\right| \wedge\left\langle\mathrm{d} r_{\alpha}\right| \\
& -\frac{1}{2} r_{\alpha} \Omega_{i j}^{\alpha}(Z)\left\langle\omega^{i}\right| \wedge\left\langle\omega^{j}\right|+\frac{1}{2} r_{\alpha} f_{\beta \gamma}^{\alpha}\left\langle\omega^{\beta}\right| \wedge\left\langle\omega^{\gamma}\right| . \tag{3.6}
\end{align*}
$$

The Poisson brackets of the non-canonical coordinates are easily calculated using the formulae of appendix 1 :

$\left\{z^{i}, z^{j}\right\}=0$	$\left\{z^{i}, \zeta^{\beta}\right\}=0$	$\left\{\zeta^{\alpha}, \zeta^{\beta}\right\}=0$	$\left\{z^{i}, r_{j}\right\}=\delta_{j}^{i}$
$\left\{\zeta^{\alpha}, r_{j}\right\}=-R^{\alpha}{ }_{\beta}(\zeta, 1) A_{j}{ }^{\beta}(z)$	$\left\{z^{i}, r_{\beta}\right\}=0$	$\left\{\zeta^{\alpha}, r_{\beta}\right\}=L^{\alpha}{ }_{\beta}(\zeta, 1)$	
$\left\{r_{i}, r_{j}\right\}=r_{\alpha} \operatorname{Ad}^{\alpha}{ }_{\beta}\left(\zeta^{-1}\right) F_{i j}{ }^{\beta}(z)$	$\left\{r_{i}, r_{\beta}\right\}=0$	$\left\{r_{\alpha}, r_{\beta}\right\}=-r_{\gamma} f_{\alpha \beta}^{\gamma}$.	

[^2]Due to the reparametrisation invariance of the action, the canonical Hamiltonian vanishes:

$$
\begin{equation*}
H_{\mathrm{can}}(P)=r_{i} v^{i}+r_{\alpha} v^{\alpha}-L=0 \tag{3.8}
\end{equation*}
$$

and we have a primary first class constraint

$$
\begin{equation*}
K(P) \equiv g^{i j}(z) r_{i} r_{j}+\left(1 / a^{2}\right) \eta^{\alpha \beta} r_{\alpha} r_{\beta}-m^{2} c^{2}=0 . \tag{3.9}
\end{equation*}
$$

The Hamiltonian of the system can be taken as

$$
\begin{equation*}
H(P)=F(u) K(P) \tag{3.10}
\end{equation*}
$$

where $F(u)$ is an arbitrary function of the evolution parameter u. The equation of motion of a dynamical variable $O(P)$ is

$$
\begin{equation*}
\mathrm{d} O / \mathrm{d} u=\{O, H\} \tag{3.11}
\end{equation*}
$$

In particular we find

$$
\begin{equation*}
\mathrm{d} r_{\alpha} / \mathrm{d} u=\left\{r_{\alpha}, H\right\}=0 \tag{3.12}
\end{equation*}
$$

The right group action R_{γ} on B, defined by (2.3), induces a left group action L_{γ} on phase space through its pull-back:

$$
\begin{equation*}
L_{\gamma}: T^{*} B \rightarrow T^{*} B: P=[Z, p] \rightarrow L_{\gamma}(P)=\left[Z \cdot \gamma^{-1},\left.R_{\gamma}^{*}\right|_{Z \cdot \gamma}{ }^{-1}(p)\right] . \tag{3.13a}
\end{equation*}
$$

In local coordinates (non-canonical!) this action reads

$$
\begin{array}{ll}
z^{i} \rightarrow z^{i} & r_{i} \rightarrow r_{i} \\
\zeta^{\alpha} \rightarrow\left(\zeta \cdot \gamma^{-1}\right)^{\alpha} & r_{\alpha} \rightarrow r_{\beta} \operatorname{Ad}_{\alpha}^{\beta}\left(\gamma^{-1}\right) \tag{3.13b}
\end{array}
$$

The generating vector field of this group action

$$
\begin{equation*}
\left|E_{\alpha}(P)\right\rangle=\left.\frac{\mathrm{d}}{\mathrm{~d} t} L_{\gamma_{\alpha}(t)}^{(P)}\right|_{t=0} \tag{3.14a}
\end{equation*}
$$

is given in the basis (3.2) by

$$
\begin{equation*}
\left|E_{\alpha}\right\rangle=-\left(\left|e_{\alpha}\right\rangle+\left|\partial / \partial r_{\beta}\right\rangle r_{\mu} f_{\alpha \beta}^{\mu}\right) \tag{3.14b}
\end{equation*}
$$

The symplectic potential $\langle\theta|$ is invariant under the above group action:

$$
\begin{equation*}
L^{*}{ }_{\gamma}\langle\theta|=\langle\theta|, \tag{3.15}
\end{equation*}
$$

so that we have an Ad^{*}-equivariant momentum mapping from $T^{*} B$ to $\mathscr{L}^{*}(\mathrm{G})$, the dual of the Lie algebra of the group G :

$$
\begin{equation*}
J: T^{*} B \rightarrow \mathscr{L}^{*}(\mathrm{G}): P \rightarrow J(P)=\left.\left\langle\theta \mid E_{\alpha}\right\rangle\right|_{P} \Delta^{\alpha} \tag{3.16}
\end{equation*}
$$

where Δ^{α} is the basis of $\mathscr{L}^{*}(\mathrm{G})$ dual to the basis T_{α} of $\mathscr{L}(\mathrm{G})$. Furthermore the Hamiltonian vector fields corresponding to the dynamical variables $\left\langle\theta \mid E_{\alpha}\right\rangle=-r_{\alpha}$ are the vector fields $\left|E_{\alpha}\right\rangle$.

Fixing an element $\bar{\rho}$ of $\mathscr{L}^{*}(G)$, the restriction Σ^{\prime} of Σ to the $2 \times(4+N)-N$ dimensional manifold $J^{-1}(\bar{\rho})$ defines a presymplectic structure on it:

$$
\begin{equation*}
\Sigma^{\prime}=\Sigma_{\mid J^{-1}(\bar{\rho})}=-\mathrm{d}\left\langle\left.\theta\right|_{, J^{-1}(\bar{\rho})} .\right. \tag{3.17}
\end{equation*}
$$

The kernel distribution of Σ^{\prime}, i.e. the distribution generated by the vector fields $|K\rangle$ of

$$
\begin{align*}
& T_{P}\left(J^{-1}(\bar{\rho})\right) \text { satisfying } \\
& \qquad \Sigma^{\prime}[|K\rangle,| \rangle]=0, \tag{3.18}
\end{align*}
$$

is integrable and defines a foliation Φ.
The solutions of (2.18) are given by $|K\rangle=\left|e_{\alpha}\right\rangle K^{\alpha}$, with

$$
\bar{r}_{\alpha} f_{\beta \gamma}^{\alpha} K^{\gamma}=0
$$

which is the infinitesimal form of the left action of the k-dimensional isotropy group $H(\bar{\rho})$ of $\bar{\rho}=-\bar{r}_{\alpha} \Delta^{\alpha} \dagger$. The quotient manifold $J^{-1}(\bar{\rho}) / \Phi=J^{-1}(\bar{\rho}) / H(\bar{\rho})$, which has $2 \times(4+N)-k$ dimensions, admits a unique symplectic 2 -form $\Sigma^{\prime \prime}$ such that proj* $\Sigma^{\prime \prime}=$ Σ^{\prime}, where proj is the natural projection $J^{-1}(\bar{\rho}) \rightarrow J^{-1}(\bar{\rho}) / \Phi$.

Let \mathscr{C} be a fixed Cartan subalgebra of $\mathscr{L}(\mathrm{G})$ with generators $T_{\alpha_{0}}$, the other generators being $T_{\alpha_{1}}$. Without loss of generality we may choose $\bar{\rho}$ as belonging to \mathscr{C} so that the manifold $J^{-1}(\vec{\rho})$ is given by the N equations

$$
\begin{equation*}
r_{\alpha_{0}}=\bar{r}_{\alpha_{0}} \quad \text { and } \quad r_{\alpha_{1}}=0 \tag{3.20}
\end{equation*}
$$

The isotropy group $H(\bar{\rho})$ is then given by elements of the form

$$
\begin{equation*}
\gamma=\exp \left(\gamma^{\alpha_{0}} T_{\alpha_{0}}\right) \tag{3.21}
\end{equation*}
$$

and under the left action of $H(\bar{\rho})$ points of $J^{-1}(\bar{\rho})$ transform as

$$
\begin{equation*}
z^{i} \rightarrow z^{i} \quad r_{i} \rightarrow r_{i} \quad \zeta^{\alpha} \rightarrow\left(\zeta \cdot \gamma^{-1}\right)^{\alpha} \quad \vec{r}_{\alpha} \rightarrow \vec{r}_{\alpha} \tag{3.22}
\end{equation*}
$$

Going to the quotient $J^{-1}(\bar{\rho}) / \Phi$ amounts to projecting onto the equivalence classes of this action. Choosing as a representative of such an equivalence class the group element of the form

$$
\zeta=\exp \left(\zeta^{\alpha_{1}} T_{\alpha_{1}}\right)
$$

coordinates on the reduced symplectic manifold are given by ($z^{i}, r_{i}, \zeta^{\alpha_{1}}$) and the reduced symplectic 2 -form reads
$\Sigma^{\prime \prime}=\left\langle\omega^{i}\right| \wedge\left\langle\mathrm{d} r_{i}\right|-\frac{1}{2} \bar{r}_{\alpha_{0}} \Omega_{i j}{ }^{\alpha_{0}}(\boldsymbol{Z})\left\langle\omega^{i}\right| \wedge\left\langle\omega^{j}\right|+\frac{1}{2} \bar{r}_{\alpha_{0}} f_{\beta_{1} \gamma_{1}}^{\alpha_{0}}\left\langle\omega^{\beta_{1}}\right| \wedge\left\langle\omega^{\gamma_{1}}\right|$.
Besides the above outlined reduction, there is another reduction of phase space due to the constraint of (2.9). However, since $\left\{r_{\alpha}, K\right\}=0$, this reduction is independent of the preceding one and the quantisation condition obtained in the next section is independent of it.

4. Charge quantisation

The pre-quantisation scheme of Kostant and Souriau, outlined in appendix 2, imposes the condition

$$
\begin{equation*}
\frac{1}{h} \int_{C} \theta=\nu \tag{4.1}
\end{equation*}
$$

where ν is an integer and where C is a closed curve in $J^{-1}(\bar{\rho})$ contained in a leaf of the foliation Φ. In particular we may choose closed orbits $C\left(\alpha_{0}\right)$ of the Hamiltonian

[^3]vector fields $-\left|E_{\alpha_{0}}\right\rangle_{\mid J^{-1}(\bar{\rho})}=\left|e_{\alpha_{0}}\right\rangle$ associated with the dynamical variables $r_{\alpha_{0}} \dagger$. These orbits are given by
\[

$$
\begin{equation*}
z^{i}=z_{0}^{i} \quad r_{i}=r_{0 i} \quad \zeta\left(\alpha_{0} ; t\right)=\zeta_{0} \cdot \gamma_{\alpha_{0}}(t) \tag{4.2}
\end{equation*}
$$

\]

where $\gamma_{\alpha}(t)$ was defined by (2.5).
The canonical 1 -form along such an orbit is

$$
\begin{equation*}
\left\langle\left.\theta\right|_{\mid C\left(\alpha_{0}\right)}=\bar{r}_{\alpha_{0}} \mathrm{~d} t .\right. \tag{4.3}
\end{equation*}
$$

Let $\tau\left(\alpha_{0}\right)$ be the period of each $\zeta\left(\alpha_{0} ; t\right)$:

$$
\begin{equation*}
\tau\left(\alpha_{0}\right)=\int_{C\left(\alpha_{0}\right)} \mathrm{d} t \tag{4.4}
\end{equation*}
$$

then we obtain

$$
\begin{equation*}
\bar{r}_{\alpha_{0}}=h \nu\left(\alpha_{0}\right) / \tau\left(\alpha_{0}\right) . \tag{4.5}
\end{equation*}
$$

We consider the following cases of interest.
(1) Group $\mathrm{U}(1): N=1, k=1$.

$$
T_{\mathrm{em}}=-\mathrm{i} \quad \tau_{\mathrm{em}}=2 \pi \quad r_{\mathrm{em}}=h / 2 \pi \nu_{\mathrm{em}} .
$$

(2) Group $\operatorname{SU}(2): N=3, k=1$. Using the Pauli matrices we have $\alpha_{0}=3$ and obtain

$$
T_{3}=(1 / 2 \mathrm{i}) \sigma_{3} \quad \tau_{3}=4 \pi \quad r_{3}=(h / 4 \pi) \nu_{3} .
$$

(3) Group $\operatorname{SU}(3): N=8, k=2$. With the Gell-Mann matrices we have $\alpha_{0}=3$ and 8 , so that

$$
\begin{array}{lll}
T_{3}=(1 / 2 \mathrm{i}) \lambda_{3} & \tau_{3}=4 \pi & r_{3}=(h / 4 \pi) \nu_{3} \\
T_{8}=(1 / 2 \mathrm{i}) \lambda_{8} & \tau_{8}=4 \pi \sqrt{ } 3 & r_{8}=(1 / \sqrt{ } 3)(h / 4 \pi) \nu_{8}
\end{array}
$$

The charges are thus quantised in terms of the elementary charge of a particle, given by \ddagger

$$
\begin{equation*}
q=h c / 2 \pi e=2 \sqrt{\kappa}(h / 2 \pi a c) \tag{4.6}
\end{equation*}
$$

We have

$$
\begin{equation*}
Q_{\alpha_{0}}=(c / e) r_{\alpha_{0}}=q\left(2 \pi / \tau\left(\alpha_{0}\right)\right) \nu\left(\alpha_{0}\right) . \tag{4.7}
\end{equation*}
$$

To examine more closely the range of allowed values of the integers $\nu\left(\alpha_{0}\right)$ we consider the van Hove operators (see appendix 2) \hat{r}_{α} corresponding to the variables r_{α}. These operators act on the Hilbert space of the square integrable functions (with Liouville measure) on phase space:

$$
\begin{equation*}
\hat{r}_{\alpha} \psi=\mathrm{i}(h / 2 \pi) E_{\alpha}[\psi] . \tag{4.8}
\end{equation*}
$$

As operators on this Hilbert space h they obey the commutation relations

$$
\begin{equation*}
\left[\hat{r}_{\alpha}, \hat{r}_{\beta}\right]=-i(h / 2 \pi) f_{\alpha \beta}^{\gamma} \hat{r}_{\gamma} \tag{4.9}
\end{equation*}
$$

$\dagger \alpha_{0}$ is an index of the fixed Cartan subalgebra \mathscr{C}.
\ddagger There is a fundamental unit of length for each simple component of the structure group, with corresponding independent units of charge.
and they generate the group representation in h :

$$
\begin{equation*}
D(\gamma): \hbar \rightarrow \hbar: \psi(P) \rightarrow(D(\gamma) \psi)(P)=\psi\left(L_{\gamma}{ }^{-1} P\right) \tag{4.10}
\end{equation*}
$$

where L_{γ} is the left group action on phase space defined in (3.13).
In terms of the variables ζ^{α} and r_{α} the Liouville measure is just the product of the bi-invariant Haar measure on the group manifold with the cartesian measure in r_{α} space \dagger. Since $\operatorname{det}[\operatorname{Ad}(\zeta)]=1$, this measure is invariant under the group action and the representation is unitary. By general theorems on the representations of compact groups it follows that the representation is reducible to a sum of irreducible unitary representations, each corresponding to definite values of the Casimir operators of the Lie algebra. Within each irreducible representation the integers $\nu\left(\alpha_{0}\right)$ will vary in a well defined range.

5. Conclusion

Thus, we have shown that the pre-quantisation condition (4.1) is sufficient to obtain charge quantisation. This is not surprising because we already knew that, in Klein's quantum approach, the charge is quantised, and on the other hand the pre-quantisation condition (3.1) is precisely what is needed in the classical theory to obtain the quantisation condition of the Bohr-Wilson-Sommerfeld type as shown in appendix 2.

It can also be shown that the mass is quantised in the following sense. The mass m^{\prime} ('dressed' mass) in the Lagrangian formalism is related to the parameter m of the theory by (1.34), which can be rewritten as $m^{\prime 2}=m^{2}-(1 / a c)^{2} \eta^{\alpha \beta} r_{\alpha} r_{\beta}$. This is nothing other than the constraint (2.9) in the Hamiltonian formalism with $m^{\prime 2} c^{2}=g^{i j} r_{i} r_{j}$. Denoting $C_{2}=-(2 \pi / h)^{2} \eta^{\alpha \beta} r_{\alpha} r_{\beta} \neq$, we obtain

$$
m^{\prime 2}=m^{2}+(h / 2 \pi a c)^{2} C_{2}
$$

with, for the cases considered in § 4,

$$
\begin{aligned}
& C_{2}=\nu_{\mathrm{em}}^{2} \quad \text { for } \mathrm{U}(1) \\
& C_{2}=\frac{1}{2}\left(\frac{1}{2} \nu_{3}\right)^{2} \quad \text { for } \mathrm{SU}(2) \text { and } \\
& C_{2}=\frac{1}{3}\left[\left(\frac{1}{2} \nu_{3}\right)^{2}+\left(\frac{1}{2}\left(\frac{1}{3}\right)^{1 / 2} \nu_{8}\right)^{2}\right] \quad \text { for } \mathrm{SU}(3)
\end{aligned}
$$

In Klein's approach one had $m=0$ so that $m^{\prime}=(h / 2 \pi a c) \sqrt{C_{2}}$.

Acknowledgments

I thank the Departamento de teoria dos Campos e Partículas of CBPF, Rio de Janeiro, for the kind hospitality during the second semester of 1983, when this work was started. It is a pleasure to thank Dr C A P Galvão and Dr J A Mignaco for stimulating discussions. Financial support of CNPq, Brasil under Process No 10.2010/83 is also acknowledged.

[^4]
Appendix 1: Lagrangian and Hamiltonian formalism in non-canonical coordinates

A system of coordinates x^{i} of points X of configuration space Q induces holonomic bases of tangent and cotangent spaces, $T_{X} Q$ and $T_{X}^{*} Q$ respectively, denoted by $\partial / \partial x^{i}$ and $\mathrm{d} \boldsymbol{x}^{i}$.

Let \boldsymbol{e}_{α} and $\boldsymbol{\varepsilon}^{\alpha}$ denote a dual pair of anholonomic bases with structure functions defined by

$$
\begin{equation*}
\left[\boldsymbol{e}_{\alpha}, \boldsymbol{e}_{\beta}\right]=c_{\alpha \beta}^{\gamma}(X) \boldsymbol{e}_{\gamma} \tag{A1.1a}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{d} \varepsilon^{\alpha}=-\frac{1}{2} c_{\beta \gamma}^{\alpha}(X) \varepsilon^{\beta} \wedge \varepsilon^{\gamma} . \tag{A1.1b}
\end{equation*}
$$

The Lagrangian is defined as a function on the tangent bundle $T Q$ with points $X^{\prime}=(X, v)$ which can be given by the coordinates ($x^{i}, u^{i}=\mathrm{d} \boldsymbol{x}^{i} \cdot v$) or by the noncanonical coordinates ($x^{i}, v^{\alpha}=\boldsymbol{\varepsilon}^{\alpha} \cdot \boldsymbol{v}$) and we have two different functions of these coordinates:

$$
\begin{equation*}
\operatorname{Lagr}\left(X^{\prime}\right)=L_{\mathrm{c}}\left(x^{i}, u^{i}\right)=L\left(x^{i}, v^{\alpha}\right) \tag{A1.2}
\end{equation*}
$$

The momentum is given by

$$
\begin{equation*}
p_{i}=\partial L_{\mathrm{c}} / \partial u^{i}=\boldsymbol{p} \cdot \boldsymbol{\partial} / \partial x^{i} \tag{A1.3a}
\end{equation*}
$$

or by

$$
\begin{equation*}
\boldsymbol{r}_{\alpha}=\partial L / \partial v^{\alpha}=\boldsymbol{p} \cdot \boldsymbol{e}_{\alpha} . \tag{A1.3b}
\end{equation*}
$$

The Euler-Lagrange equations read

$$
\begin{equation*}
\mathrm{d} p_{i} / \mathrm{d} t-\partial L_{\mathrm{c}} / \partial x^{i}=0 \tag{A1.4a}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{d} r_{\alpha} / \mathrm{d} t+r_{\mu} c_{\alpha \beta}^{\mu}(X) v^{\beta}-e_{\alpha}(L)=0 \tag{A1.4b}
\end{equation*}
$$

where $v=\mathrm{d} X / \mathrm{d} t$.
The points $X^{\prime \prime}=(X, p)$ of phase space $T^{*} Q$ have canonical and non-canonical coordinates, $\left(x^{i}, p_{i}\right)$ and $\left(x^{i}, r_{\alpha}\right)$ respectively, with corresponding holonomic bases of $T_{X}\left(T^{*} Q\right)$ and $T_{X}^{*}\left(T^{*} Q\right)$ given by

$$
\begin{equation*}
\left(\left|\partial / \partial x^{i}\right\rangle_{\mathrm{c}},\left|\partial / \partial p_{\mathrm{i}}\right\rangle_{\mathrm{c}}\right) \quad\left(\left|\partial / \partial x^{i}\right\rangle_{\mathrm{nc}},\left|\partial / \partial r_{\alpha}\right\rangle_{\mathrm{nc}}\right) \tag{A1.5a}
\end{equation*}
$$

with duals

$$
\begin{equation*}
\left(\left\langle\left.\mathrm{d} x^{i}\right|_{\mathrm{c}},\left\langle\left.\mathrm{~d} p_{i}\right|_{\mathrm{c}}\right) \quad\left(\left\langle\left.\mathrm{d} x^{i}\right|_{\mathrm{nc}},\left\langle\left.\mathrm{~d} r_{\alpha}\right|_{\mathrm{nc}}\right)\right.\right.\right.\right. \tag{A1.5b}
\end{equation*}
$$

They are related by:

$$
\begin{align*}
& \left|\partial / \partial x^{i}\right\rangle_{\mathrm{c}}=\left|\partial / \partial x^{i}\right\rangle_{\mathrm{nc}}+r_{\alpha} \varepsilon_{j}^{\alpha} \partial_{i} e_{\beta}^{j}\left|\partial / \partial r_{\beta}\right\rangle_{\mathrm{nc}} \tag{A1.6a}\\
& \left|\partial / \partial p_{i}\right\rangle_{\mathrm{c}}=e_{\alpha}^{i}\left|\partial / \partial r_{\alpha}\right\rangle_{\mathrm{nc}} \tag{A1.6b}
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle\left.\mathrm{d} x^{i}\right|_{\mathrm{c}}=\left\langle\left.\mathrm{d} x^{i}\right|_{\mathrm{nc}}\right.\right. \tag{A1.7a}\\
& \left\langle\left.\mathrm{d} p_{i}\right|_{\mathrm{c}}=\left\langle\left.\mathrm{d} r_{\alpha}\right|_{\mathrm{nc}} \varepsilon^{\alpha}{ }_{i}+r_{\alpha} \partial_{j} \varepsilon^{\alpha}{ }_{i}\left(\left.\mathrm{~d} x^{j}\right|_{\mathrm{nc}} .\right.\right.\right. \tag{A1.7b}
\end{align*}
$$

Useful anholonomic bases of $T_{X^{\prime \prime}}\left(T^{*} Q\right)$ and $T_{X^{\prime \prime}}^{*}\left(T^{\prime \prime} Q\right)$ are

$$
\begin{align*}
& \left|e_{\alpha}\right\rangle=\left|\partial / \partial x^{i}\right\rangle_{\mathrm{nc}} e^{i}{ }_{\alpha}(X) \tag{A1.8a}\\
& \left|\partial / \partial r_{\alpha}\right\rangle=\left|\partial / \partial r_{\alpha}\right\rangle_{\mathrm{nc}} \tag{A1.8b}
\end{align*}
$$

with dual

$$
\begin{align*}
& \left\langle\varepsilon^{\alpha}\right|=\varepsilon^{\alpha}{ }_{i}(X)\left\langle\left.\mathrm{d} x^{i}\right|_{\mathrm{nc}}\right. \tag{A1.9a}\\
& \left\langle\mathrm{d} r_{\alpha}\right|=\left\langle\left.\mathrm{d} r_{\alpha}\right|_{\mathrm{nc}} .\right. \tag{A1.9b}
\end{align*}
$$

The symplectic potential, 1 -form on $T^{*} Q$, reads

$$
\begin{equation*}
\langle\theta|=p_{i}\left\langle\mathrm{~d} x^{i}\right|=r_{\alpha}\left\langle\varepsilon^{\alpha}\right| \tag{A1.10}
\end{equation*}
$$

and the symplectic 2 -form is obtained as

$$
\begin{align*}
\Sigma & =-\mathrm{d}\langle\theta|=\left\langle\mathrm { d } x ^ { i } | _ { c } \wedge \left\langle\left.\mathrm{d} p_{i}\right|_{\mathrm{c}}\right.\right. \tag{A1.11a}\\
& =\left\langle\varepsilon^{\alpha}\right| \wedge\left\langle\mathrm{d} r_{\alpha}\right|+\frac{1}{2} r_{\mu} c_{\alpha \beta}^{\mu}(X)\left\langle\varepsilon^{\alpha}\right| \wedge\left\langle\varepsilon^{\mathcal{B}}\right| . \tag{A1.11b}
\end{align*}
$$

The Hamiltonian vector field $|H(F)\rangle$ associated with a classical observable

$$
\begin{equation*}
F\left(X^{\prime \prime}\right)=f_{c}\left(x^{i}, p_{i}\right)=f\left(x^{i}, r_{\alpha}\right) \tag{A1.12}
\end{equation*}
$$

is defined by:

$$
\begin{equation*}
\Sigma[|H(F)\rangle,| \rangle]=\langle\mathrm{d} F \mid\rangle \tag{A1.13}
\end{equation*}
$$

In coordinates it is given by

$$
\begin{align*}
|H(F)\rangle & =\left|\partial / \partial x^{i}\right\rangle_{\mathrm{c}} \partial f_{\mathrm{c}} / \partial p_{i}-\left|\partial / \partial p_{i}\right\rangle_{\mathrm{c}} \partial f_{\mathrm{c}} / \partial x^{i} \tag{A1.14a}\\
& =\left|e_{\alpha}\right\rangle \partial f / \partial r_{\alpha}-\left|\partial / \partial r_{\alpha}\right\rangle\left(e_{\alpha}(f)+r_{\mu} c_{\alpha \beta}^{\mu}(X) \partial f / \partial r_{\beta}\right) \tag{A1.14b}
\end{align*}
$$

The Poisson brackets of two observables are

$$
\begin{align*}
\{F, G\}=\Sigma[\mid & H(F)\rangle,|H(G)\rangle] \tag{A1.15}\\
& =\partial f_{\mathrm{c}} / \partial x^{i} \partial g_{\mathrm{c}} / \partial p_{i}-\partial f_{\mathrm{c}} / \partial p_{i} \partial g_{\mathrm{c}} / \partial x^{i} \tag{A1.16a}\\
& =e_{\alpha}(f) \partial g / \partial r_{\alpha}-\partial f / \partial r_{\alpha} e_{\alpha}(g)-r_{\mu} c_{\alpha \beta}^{\mu}(X) \partial f / \partial r_{\alpha} \partial g / \partial r_{\beta} \tag{A1.16b}
\end{align*}
$$

Appendix 2. Pre-quantisation

The pre-quantisation scheme of Kostant and Souriau (see, for example, Woodhouse 1980) is a globalisation of the construction, due to van Hove (1951), of an isomorphism of the Lie algebra of the classical observables with the Poisson bracket operation, on the Lie algebra of symmetric operators on the Hilbert space of the square integrable functions on phase space with the commutator operation.

Consider a principal U(1) bundle E over a symplectic manifold S with its symplectic structure given by the 2 -form σ. Points e of E will be given in a local gauge by $e \rightarrow[x, \exp (\mathrm{i} \xi)]$, where x is a point of S. The bundle projection is denoted by

$$
\begin{equation*}
\operatorname{Pr}: E \rightarrow S: e \rightarrow x=\operatorname{Pr}(e) . \tag{A2.1}
\end{equation*}
$$

The group $\mathrm{U}(1)$ acts on the right on E and equivariant functions on E are defined such
that

$$
\begin{equation*}
\Psi[e \cdot \exp (\mathrm{i} \alpha)]=\exp (-\mathrm{i} \alpha) \Psi[e] \tag{A2.2}
\end{equation*}
$$

In a local gauge they have the following form

$$
\begin{equation*}
\Psi[x, \xi]=\exp (-\mathrm{i} \xi) \psi(x) . \tag{A2.3}
\end{equation*}
$$

A scalar product of such functions is defined by

$$
\begin{equation*}
(\Psi, \Phi)=h^{-n} \int_{E} \Psi^{*}[e] \Phi[e] \mu_{\mathrm{L}} \otimes \frac{\mathrm{~d} \xi}{2 \pi} \tag{A2.4}
\end{equation*}
$$

where μ_{L} is the Liouville measure on the $2 n$-dimensional phase space S and where h will be identified with Planck's constant. The square integrable functions on E with the above product form a Hilbert space h.

The bundle E has a connection given in a local gauge by

$$
\begin{equation*}
\alpha=-(2 \pi / h) \theta+\mathrm{d} \xi \tag{A2.5}
\end{equation*}
$$

where θ is a local symplectic potential so that the curvature of the connection equals the pull-back of the symplectic 2 -form σ :

$$
\begin{equation*}
\Omega=\operatorname{Pr}^{*}(2 \pi \sigma / h) . \tag{A2.6}
\end{equation*}
$$

Weil's integrality condition states that for such a bundle to exist it is necessary and sufficient that the closed 2 -form $\Omega / 2 \pi$ should define an integral cohomology class of S. This condition is trivially satisfied when the symplectic manifold S is a cotangent bundle $T^{*} Q$ since E is then a trivial bundle and globally $\Omega=\mathrm{d} \alpha$ is exact. It is however not trivial when S arises from the reduction of a cotangent bundle and it can be shown (Woodhouse 1980) that Weil's integrality condition turns into the condition that

$$
\begin{equation*}
1 / h \int_{C} \theta=I(C) \tag{A2.7}
\end{equation*}
$$

must be integer valued when C is a closed orbit belonging to a leaf of the foliation defined by the pre-symplectic 2 -form σ^{\prime} which is the restriction of σ to the constrained submanifold of S.

A more pedestrian way to see how this condition arises is based upon the construction (van Hove 1950) of a symmetric operator, associated with each classical observable, acting on \hbar. To $A(x)$ we associate $\hat{A}: \hbar \rightarrow \hbar$ defined by

$$
\begin{equation*}
\hat{A} \Psi=-\mathrm{i}(h / 2 \pi) \nabla_{H(A)} \Psi+A \Psi \tag{A2.8}
\end{equation*}
$$

where ∇ is the covariant derivative of equivariant functions, defined by the connection α and where $H(A)$ is the Hamiltonian vector field associated with $A(x)$.

In a local gauge where the function $\Psi[e]$ is given by $\psi(x)$, the operator \hat{A} acts as

$$
\begin{equation*}
\hat{A} \psi=-\mathrm{i}(h / 2 \pi) H(A)[\psi]+[A-(\theta, H(A))] \psi \tag{A2.9}
\end{equation*}
$$

Considering the eigenvalue equation

$$
\begin{equation*}
\hat{A} \psi=a \psi \tag{A2.10}
\end{equation*}
$$

we notice that, on the orbits of the Hamiltonian vector field $H(A)$, the function $A(x)$ remains constant and that

$$
-\mathrm{i}(h / 2 \pi) H(A)[\psi]-(\theta, H(A)) \psi=0
$$

or $\mathrm{d} \psi / \psi=2 \pi \mathrm{i} \theta / h$, which yields

$$
\begin{equation*}
\psi(x(t))=\exp \left(\frac{2 \pi \mathrm{i}}{h} \int_{C\left(t, t_{0}\right)} \theta\right) \psi\left(x\left(t_{0}\right)\right) \tag{A2.11}
\end{equation*}
$$

It follows that for a closed orbit $C\left(t, t_{0}\right)$ this implies the Bohr-Wilson-Sommerfeld condition.

Appendix 3. On the ansatz for the metric and the action

In order to implement spontaneous fibration in the sense that the metric be a possible solution of all of the $(4+N)$-dimensional Einstein's equations, it is necessary to consider more general metrics than that of (1.12). This amounts to the non-Abelian generalisation (Cho and Freund 1975) of the Jordan-Thiry theory (see, for example, Lichnerowicz 1955) rather than of the original Kaluza-Klein. The metric

$$
\begin{equation*}
g(X)=g_{i j}(\pi(X)) \omega^{i} \otimes \omega^{j}+H_{\alpha \beta}(X) \omega^{\alpha} \otimes \omega^{\beta} \tag{A3.1}
\end{equation*}
$$

is still right invariant if

$$
\begin{equation*}
H_{\alpha \beta}(\boldsymbol{X} \cdot \gamma)=H_{\mu \nu}(\boldsymbol{X}) \operatorname{Ad}_{\alpha}^{\mu}(\gamma) \operatorname{Ad}_{\beta}^{\nu}(\gamma), \tag{A3.2}
\end{equation*}
$$

so that in a local gauge

$$
\begin{equation*}
H_{\alpha \beta}(x, \xi)=h_{\mu \nu}(x) \operatorname{Ad}_{\alpha}^{\mu}(\xi) \operatorname{Ad}_{\beta}^{\nu}(\xi) \tag{A3.3}
\end{equation*}
$$

Due to this right invariance, the Riemannian curvature scalar $\mathscr{R}(X)$ will be still constant on each fibre. This implies that in a generalised Hilbert type action we may integrate over the group volume and obtain an effective action in four-dimensional space. It can be checked that the obtained equations of motion are the same as those to which the ($4+N$)-dimensional Einstein's equations reduce to when the ansatz metric (A3.1) is substituted in them. The Euler-Lagrange equations for the particle's motion are \dagger
$\frac{\mathrm{d}}{\mathrm{d} u} r_{i}-\left\{\begin{array}{c}p \\ i q\end{array}\right\} r_{p} v^{q}=r_{\alpha} \Omega_{i j}^{\alpha}(Z) v^{j}+\frac{1}{2} r_{\alpha} \operatorname{Ad}^{\alpha}{ }_{\mu}\left(\zeta^{-1}\right) h^{\mu \rho} \nabla_{i} h_{\rho \nu} \operatorname{Ad}_{\beta}^{\nu}(\zeta) v^{\beta}$
and

$$
\begin{equation*}
\mathrm{d} r_{\alpha} / \mathrm{d} u=0 \tag{A3.5}
\end{equation*}
$$

The pre-quantisation condition (3.1) will again yield the quantisation of the momenta r_{α}, but the physical interpretation will be more complicated. For the Abelian JordanThiry theory we refer to Lichnerowicz (1955).

We have not considered such a generalisation mainly for simplicity reasons but also because we are somewhat reluctant to introduce $N(N+1) / 2$ additional scalar fields $h_{\alpha \beta}(x)$ whose interpretation as candidates for Higgs fields seems questionable. Naturally the theory we consider is then not an example of spontaneous fibration in the sense discussed above.

[^5]
References

Abraham R and Marsden J E 1978 Foundations of Mechanics (Reading, Mass.: Benjamin Cummings)
Cho Y M 1975 J. Math. Phys. 162029
Cho Y M and Freund P G O 1975 Phys. Rev. D 121711
Coqueraux R 1983 CERN Preprint Th- 3639
Coqueraux R and Jadczyk A 1983 Commun. Math. Phys. 9079
Duval C 1981 Ann. Inst. H. Poincaré 3495
Duval C and Horvathy P 1982 Ann. Phys., NY 14210
Kaluza Th 1921 Sitz. Preuss. Akad. Wiss. 966
Klein O 1926 Z. Phys. 37895
Lichnerowicz A 1955 Théories relativistes de la gravitation et de l'électromagnétisme (Paris: Hasson)
Orzalesi C A 1981 Fortschr. Phys. 29413
Orzalesi C A and Pauri M 1982 Nuovo Cimento B 68193
Salam A and Strathdee J 1982 Ann. Phys., NY 141316
Vanhecke F J 1982 Rev. Bras. Fís. 12343
van Hove L 1951 Mém. Acad. R. Belg. Coll. Sci. 12661
Weinberg S 1983 Phys. Lett. 125B 265
Witten E 1981 Nucl. Phys. B 186412
Woodhouse N 1980 Geometric Quantization (Oxford: Clarendon)

[^0]: † I thank the referee for drawing my attention to this work.

[^1]: \dagger The implementability of the spontaneous fibration and this ansatz for the metric are discussed in appendix 3 .

[^2]: \dagger Abraham and Marsden (1978) and Woodhouse (1980) give proofs and a more detailed treatment of the general theory.
 \ddagger The ket-bra notation is used here for vectors on phase space $T^{*} B$ in order to distinguish them from the vector fields on configuration space B which were denoted in bold.

[^3]: $\dagger k$ is the dimension of a Cartan subalgebra of $\mathscr{L}(\mathrm{G})$. Note that $N-k=2 p$ is even.

[^4]: \dagger We do not have to consider the z^{i}, r_{1} dependence of the functions on phase space since these coordinates are not affected by the group action.
 \ddagger Group theoretically C_{2} is the quadratic Casimir invariant.

[^5]: \dagger The field equations are discussed in Cho and Freund (1975), Orzalesi (1981) and in Coqueraux and Jadczyk (1983).

