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J .  Phys. A: Gen. 18 (1985) 1839-1853. Printed in Great Britain 

Non-Abelian charge quantisation and the 
Bohr-Wilson-Sommerfeld condition 

F J Vanhecke 
Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59000 Natal-RN, 
Brasil 

Received 9 April 1984, in final form 3 December 1984 

Abstract. The quantisation of the non-Abelian charge of a point-like particle is shown to 
arise from the BWS condition in the pre-quantisation scheme of Kostant and Souriau. 

1. Introduction 

In generalised Kaluza-Klein theories one assumes a spontaneous fibration of a higher- 
dimensional space B in a local product of ordinary spacetime M with a compact 
‘internal’ N-dimensional fibre F. Usually F is taken to be a Lie group G or a right 
coset space H\G.  The fibration is spontaneous in the sense that the field equations 
for the metric on B have a ‘ground-state’ solution given by the direct sum of a metric 
on M and a G-invariant metric on F. Thus, the generators of G define Killing vectors 
on B and a right action of G.  Such metrics incorporate Yang-Mills potentials of a 
subgroup of G and generalise the five-dimensional Kaluza metric to higher dimensions. 
From the Einstein equations on B, one obtains, for the generalised Kaluza-Klein 
metric, field equations which lead to a theory of coupled Einstein, Yang-Mills and 
scalar fields in four dimensions : this ‘dimensional reduction’ can be obtained either 
by working in a frame where the Kaluza-Klein metric becomes independent of the 
internal coordinates, or by performing some averaging procedure over the fibrest. 

If matter fields or wavefunctions on B are also considered and subjected to invariant 
wave equations, following Klein’s proposal, one finds that such fields describe in four 
dimensions particles with quantised charges and masses. In particular, Klein’s method 
can be applied to a wavefunction in 4+ N dimensions, subjected to the invariant 
equation 

[A+(mc/h)’ ]P(X)  =0,  (1.1) 

where A is the Laplace operator on B with the Kaluza-Klein metric. In Klein’s paper, 
one had N = 1 and m = 0, leading to a U ( l )  bundle for B and to the quantisation 
rules qn = n ( l / a ) ~ ,  m, = lnlh/ac, where n =O, i l ,  1 2 , .  . . , I is the Planck length, a is 
the length of the internal fibre and E is the electron charge. In such a framework 
Weinberg ( 1984) has given a prescription for calculating the gauge coupling constants 
in the general case. 

+ For all additional details and references to the original literature see Cho (1975), Cho and Freund (1975). 
Orzalesi (1981), Witten (1981) and Salam and Strathdee (1982). For more mathematically oriented remarks 
see Coqueraux and Jadczyk (1983) and Coqueraux (1983). 

0305-4470/85/111839 + 15$02.25 0 1985 The Institute of Physics 1839 



1840 F J Vanhecke 

In this paper, it is shown that a quantisation of charge also emerges within a 
different framework, which is pre-quantum mechanical: namely we show that the 
prequantisation scheme of Kostant and Souriau implies the quantisation of the charges. 
Closely related to our work is that of Duval (1981) and Duval and Horvathy (1982)t, 
the main difference being that we emphasise the realisation of the Poisson algebra of 
the observables in the Hilbert space of square integrable functions on phase space 
(van Hove 1951). 

In this framework, matter is described by (classical) point-like particles which move 
along time-like geodesics on B and, in order to interpret the non-Abelian charges as 
components of the momentum in 4+ N dimensions, it is assumed that the fibre F is 
the gauge group G itself, so that B is a principal fibre bundle over spacetime M with 
structure group G. The gauge group G is taken semi-simple and compact. 

In Q 2 the well known equations of motion for such dynamical systems are given 
(Cho 1975, Orzalesi and Pauri 1982, Vanhecke 1982) and in § 3 the Hamiltonian 
formalism and the reduction of phase space due to the presence of symmetry are 
discussed. In the last section it is shown how the Kostant-Souriau pre-quantisation 
scheme (Woodhouse 1980) implies the quantisation of the charges. Some formulae 
on the non-holonomic formulation of the Lagrangian and Hamiltonian formalism are 
given in appendix 1 ;  the mentioned pre-quantisation scheme is briefly outlined in 
appendix 2 and in appendix 3 some comments are made on the ansatz for the 4 +  N 
dimensional metric and on the 'spontaneous fibration' aspect of the theory. 

2. The equations of motion 

Let B be a principal fibre bundle over spacetime M with projection T :  B + M and 
structure group G. In a local gauge 4 the points X ,  Y, . . . of B are given by X = 4(x, t) ,  
where x = T ( X )  is a point of M with coordinates xi  ( i  = 0, 1 ,2 ,3)  and where 5 is a 
group element with dimensionless canonical coordinates 6" (a = 1,2, . . . , N )  defined 
by t = e x p ( t " T m ) .  The generators T, of the Lie algebra 2 ( G )  obey 

and, since G is assumed to be semi-simple and compact, the Killing form 

77,p =fLf-;" (2.2) 

is non-degenerate and negative definite. The group G acts globally on the right on 
B:  (YEG) 

(2.3) R y  : B + B : x = 4 (x, 6) + R ,  ( X )  = 4 (x, 6 .  y ) = x . y. 

This action is generated by the fundamental vector fields 

where 

(2.4) 

+ I thank the referee for drawing my attention to this work. 
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The bundle is endowed with a connection defined by the 1-forms o " ( X ) ,  given 

( 2 . 6 ~ )  

in a local gauge by 

~ " ( x ,  5) = Ad",([-')A,P(x) d x ' +  Lup(S-', 5) dsp,  

where A:(x) are the gauge potentials and where 

L"p(5, 0 = a ( ( *  4 ) " l a P  

A451 = ut, 5-')R(5-',  1) = R ( 5 - ' ,  5)L(5 ,1)  

o ' ( x ,  5) = dx'  (2.7) 

RLlp(S,  I )  = a ( l *  5 ) " / a l P  
define the left and right auxiliary matrices such that 

is the N x N adjoint representation of G in 2 ' (G) .  These 1-forms together with 

form a basis of cotangent space T R B  with dual 

e,(x, 5) = (a /aP)LPo(5,  1) ( 2 . 8 ~ )  

e,(x, 5) = a / a x ' - ( a / a t P ) R P a ( &  &%"(x). (2.8b) 

The structure functions of the anholonomic basis are given by 

d o '  = 0 ( 2 . 9 ~ )  

dw" = -if&op A oY+f f luOL(X)w'  A oJ (2.9b) 

where the curvature is given in a local gauge by 

fltj"(x, 5 ) = A d " p ( S - i ) F ~ ( x )  (2.10) 

Fl," = a,AJ" - aJA," +f;;,,A,PAJY. (2.11) 

g ( X )  = g,,( Tr(X) )o 'OoJ  + a2r],pw" O w P  

with field strengths 

The non-Abelian Kaluza-Klein metric in bundle space is given by (Cho 1975)t 

(2.12) 

where a is a constant with the dimensions of length. Its Riemannian curvature scalar, 
constant on each fibre, reads 

%! ( X )  = R ( x )  + N / 4 a 2  + $ a 2 ~ e . p F u "  (x)  F " P ( ~ )  (2.13) 

where R(x)  is the Riemannian curvature scalar of the metric g,(x) in spacetime M. 

Sfield = - c3 d4xldet g(x)11"(%(x)-2A) (2.14) 

where K is the gravitational coupling constant, c is the speed of light and A is a 
cosmological constant introduced to eventually cancel with the group curvature N / 4 a 2  
appearing in (1.13). 

The matter is described by point-like particles with a typical trajectory Z (  u)-locally 
z l ( u ) ,  l"(u)-where u is an evolution parameter. The action is proportional to the 

+ T h e  implementability of the spontaneous fibration and this ansatz for the metric are discussed In 
appendix 3 

The field action is taken as 

1 6 7 ~  
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(4 + N )  -dimensional arc length: 

Smatter = -mc d a  s 
with 

d u l d u  = c? = I gz [2 ,  2]11/2 

(2.15) 

(2.16) 

where 2 = dZ/du  is the velocity. The trajectories of the particles are the geodesics in 
bundle space (Orzalesi and Pauri 1982, Vanhecke 1982). 

The explicit form of the equations of motion is most easily obtained from the 
formulae of appendix 1 using the non-holonomic components of the velocities: 

U= = (Ua, 2)  a = i , a  (2.17) 

and the Lagrangian 

L =  -mc(g,(z)v'u'+ a 2 ~ , p v u u p ) 1 ~ 2 .  

The momentum p is defined by: 

d 
d t  

( p ,  w )  =- L(z,  U +  t w ) ( , , o  

(2.18) 

(2.19) 

and its holonomic p ,  = ( p ,  a/dZ5) and non-holonomic components ra = ( p ,  e,) = 
aL/av" are related by 

rt = pi -puROLp (5,1)A,P (z) 

=ppLP,(S ,  1 ) .  

In terms of the velocities, the non-holonomic components read: 

rl = - ( m c / c ? ) g f J ( z ) d  

r, = -(mc/u)a2q,pvP. 

The geodesic equations are 

mc[-(-) d U' = - r e  Ad"p(~- l )F ' ,P(z )u '  
du U 

(2.20a) 

(2.20b) 

( 2 . 2 1 ~ )  

(2.21b) 

( 2 . 2 2 ~ )  

dr,/du = 0. (2.226) 

In order to relate these equations in an unambiguous way to the non-Abelian Lorentz 
equation and charge conservation it is necessary to consider the field equations 

R, - tRg,] + ( A  - N/8a2)g,, + ( S ~ K /  c3) Tv = 0 ( 2 . 2 3 ~ )  

V , 9 " "  = (4.rr/c)JJq, (2.236) 

where we have introduced the field strengths 

9; = eFve (2.24) 

with the universalt unit of charge 

e = ac2/2JK. (2.25) 

t The charge e is 'universal' in the sense that it does not depend on the properties of a specific particle, but 
only on the universal constants c and K and on the size Q of the fibre. 
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This unit of charge is introduced so that the Yang-Mills part of the energy-momentum 
tensor in ( 2 . 2 3 ~ )  reads 

(2.26) TyyM = -( 1/47rc)(~g,Fp;,,"FpqP - 9 1P "FPp)  J v'd' 

The matter contribution to the energy-momentum tensor is as usual: 

TIFatter(x) = ldet g(x)l-"* (2.27) 

The derivative in (2.23b) is a doubly covariant derivative and the current is expressed 
as : 

J'"(x) = Idet g(x)I-"' du cZ"(u)v'S4(x-z(u)) (2.28) 

with 

mc2 
e'/ a 

Qa(u)  = e- k " ( u )  (2.29b) 

k a ( u ) =  -aV"/c+. ( 2 . 2 9 ~ )  

The 'intrinsic' or 'body-fixed' charge Q" is related to the momentum by 

ra = v u p ( e / c ) Q P .  (2.30) 

From the equations of motion it follows that the dimensionless k" are constant so that 
along the trajectory 

d a 2  = ( 1  - ~ , p k " k P ) - '  ds' (2.31) 

and since vap is negative definite da '  and ds2 have the same sign. We may thus choose 
the four-dimensional arc length as evolution parameter with 

(2.32) 6 = (1 - ~ a p k " k P ) - ' / 2 .  

The equations of motion are finally written as 

and 

dQ"/ds  = 0 

or equivalently 

dZa/ds+f&,A~(z)uiZy = 0. 

It should be noticed that the 'dressed' mass m', 

m' = m( 1 - q u p k " k P ) ' / 2  

also appears in the expression of the energy-momentum tensor 

T,matter(x) = ldet g(x)l-1'2 ds m ' c ~ ~ u ~ i 3 ~ ( x  - z(s)) .  

( 2 . 3 3 ~ )  

(2.33b) 

( 2 . 3 3 ~ )  

(2.34) 
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Formally I" can be obtained as an ordered integral along the spacetime trajectory of 
the 1-form T,A,"(x) dx'. Substitution of the obtained result in ( 2 . 3 3 ~ )  leads to a 
formal integro-differential equation (Vanhecke 1982). 

3. Hamiltonian formalism-reduction of phase space 

We limit ourselves to study the motion of a test particle in a fixed field configuration 
so that the configuration space of the system is the bundle space B itself. While the 
Lagrangian formalism is built upon the tangent bundle TB, with typical points (Z, U), 
the Hamiltonian approach is defined in phase space which is the cotangent bundle 
T*B with points P = (Z, p)t .  Canonical and non-canonical coordinates of points in 
phase space are given by (z', c", pi, p , )  and (zi, l", r,, ru). The holonomic basis of 
Tp( T * B )  associated with the non-canonical coordinates is formed by the vector fields$ 

Ia/azi) / a /aS" )  la/ari) la/ a ru ). (3.1) 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 

The canonical symplectic potential on phase space reads 

(el = r,(w'/+r,(w"l (3.5) 

and the symplectic 2-form is given by 

X =  -d(el = ( w ' ~ A  (drtl+(wal A (dr,l 

-frun,,"(Z)(w'l A ( w J ~ + ~ r u f ~ y ( w p ~  A ( ~ ' 1 .  (3.6) 
The Poisson brackets of the non-canonical coordinates are easily calculated using the 
formulae of appendix 1: 

{zl ,  z'} = 0 {z', p }  = 0 {5", PI = 0 {zl, r,} = S l ,  

{l", rJl = -R"p( l ,  l)A,P(z) {z', rp} = 0 {r, rp} = L"p(5, 1 )  (3.7) 

{rl, r ~ ) =  r, Ad"p(l-')F:(z) {rl, rpl = 0 {ru, rpl = - r r Y  "0' 

t Abraham and Marsden (1978) and Woodhouse (1980) give proofs and a more detailed treatment of the 
general theory 
$The ket-bra notation is used here for vectors on phase space T*B in order to distinguish them from the 
vector fields on configuration space B which were denoted in bold 
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Due to the reparametrisation invariance of the action, the canonical Hamiltonian 

(3 .8)  

vanishes: 

H,,,( P )  = r,ui + rev" - L = 0 

and we have a primary first class constraint 

K ( P ) =  g i ' ( z ) r , r ,+ ( l /a2 )77aPr , rp  - m 2 c 2 = 0 .  (3.9) 

The Hamiltonian of the system can be taken as 

H ( P ) = F ( u ) K ( P )  (3.10) 

where F ( u )  is an arbitrary function of the evolution parameter U. The equation of 
motion of a dynamical variable O ( P )  is 

dO/du = (0, H } .  (3.11) 

In particular we find 

dr,/du = { r,, H }  = 0. (3.12) 

The right group action R ,  on B, defined by (2 .3) ,  induces a left group action L, 
on phase space through its pull-back: 

L , :  T*B+ T * B : P = [ Z , p ] + L , ( P ) = [ Z .  y-', R; l= . , - l (p ) ] .  ( 3 . 1 3 ~ )  

In local coordinates (non-canonical !) this action reads 

5'  + z' 

I Q + ( 5 *  Y - l Y  

I, + r, 

r, + rp AdP,(y-'). 

The generating vector field of this group action 

(3.13 b )  

(3.14~) 

is given in the basis (3 .2)  by 

I Ea ) = -( 1 e m  ) + /a/ a r p  ) r p E p  * (3 .146)  

The symplectic potential (61 is invariant under the above group action: 

L*,(4 = ( @ I ,  (3.15) 

so that we have an Ad*-equivariant momentum mapping from T*B to 2 * ( G ) ,  the 
dual of the Lie algebra of the group G: 

J :  T * B + 2 * ( G ) :  P + J ( P )  =(61E,) lpA" (3.16) 

where A" is the basis of T*(G) dual to the basis T, of 2 ( G ) .  Furthermore the 
Hamiltonian vector fields corresponding to the dynamical variables (OlE,) = - r ,  are 
the vector fields /Em). 

Fixing an element p of T*(G), the restriction I;' of I; to the 2 x(4+ N) - N 
dimensional manifold J- ' (  p )  defines a presymplectic structure on it: 

I;' = I ; i , - l ( b j  = -d( O l l , - l ( p ) .  (3.17) 

The kernel distribution of Z', i.e. the distribution generated by the vector fields IK)  of 
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(3.18) 

Tp ( J - ' (  p ) )  satisfying 

Z", I )I = 0, 

is integrable and defines a foliation @. 
The solutions of (2.18) are given by IK) = le,)K", with 

Fo f F y  K = 0, 

which is the infinitesimal form of the left action of the k-dimensional isotropy group 
H ( p )  of p = - T a A m t .  The quotient manifold J - ' ( p ) / @  = J - ' ( p ) / H ( p ) ,  which has 
2 x(4+ N )  - k dimensions, admits a unique symplectic 2-form I;" such that proj* Z"= 
Z', where proj is the natural projection J - ' ( p )  + J - ' ( p ) / @ .  

Let V be a fixed Cartan subalgebra of 2 ( G )  with generators Tu,, the other generators 
being Tal. Without loss of generality we may choose p as belonging to V so that the 
manifold J - ' ( p )  is given by the N equations 

'UO = TUO and r., = 0. (3.20) 

The isotropy group H ( p )  is then given by elements of the form 

Y = exP(y"OTm,) (3.21) 

and under the left action of H ( p )  points of J - ' ( p )  transform as 

z' + Z I  r, + r1 5" + (5. Y - l Y  T" + 7". (3.22) 

Going to the quotient J - ' ( p ) / @  amounts to projecting onto the equivalence classes of 
this action. Choosing as a representative of such an equivalence class the group element 
of the form 

5 = exP(S"'Tq) 
coordinates on the reduced symplectic manifold are given by ( z ' ,  rl, 5"1) and the reduced 
symplectic 2-form reads 

(3.23) 

Besides the above outlined reduction, there is another reduction of phase space 
due to the constraint of (2.9). However, since {re ,  K }  = 0, this reduction is independent 
of the preceding one and the quantisation condition obtained in the next section is 
independent of it. 

4. Charge quantisation 

The pre-quantisation scheme of Kostant and Souriau, outlined in appendix 2, imposes 
the condition 

where v is an integer and where C is a closed curve in J - ' ( p )  contained in a leaf of 
the foliation @. In particular we may choose closed orbits C((Y,) of the Hamiltonian 

t k is the dimension of a Cartan subalgebra of Z(G). Note that N - k = 2 p  is even. 
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vector fields - - ~ E & I ( ~ ~  = le,,) associated with the dynamical variables r%t.  These 
orbits are given by 

z' = zo' r, = r,, 5(ao; t )  = 4-0 * y,(t)  (4.2) 

where m ( t )  was defined by ( 2 . 5 ) .  
The canonical I-form along such an orbit is 

(@I,c(,,, = fa,, dt. (4.3) 

Let r (ao )  be the period of each l ( a o ;  t ) :  

5 d t  
T ( a o )  = 

C ( u n )  

then we obtain 

'a, = h 4 a o ) / T ( a , ) .  

We consider the following cases of interest. 
(1) Group U(1): N = 1, k =  1. 

(4.4) 

(4.5) 

T em = - i  rem = 2 r  rem = h/2.rrvem. 

(2) Group SU(2): N = 3, k = 1. Using the Pauli matrices we have a, = 3 and obtain 

T, = ( 1/2i)u3 q =4?7 r, = (h/4.rr) v3. 

(3) Group SU(3): N = 8, k = 2. With the Gell-Mann matrices we have a. = 3 and 
8, so that 

T, = (l/2i)A3 r 3 = 4 r  r3 = (hl4.n) U, 

T8 = ( 1/2i)A8 7 8  = 4 r J 3  r8 = (1/J3)(h/4.rr)v8. 

The charges are thus quantised in terms of the elementary charge of a particle, 
given by$ 

- 
q = hc/2.rre = 2J~(h /Zr rac ) .  

a, = ( c /  e)  'ao = q(2 r /  T (  a,>) 4 ao). 

(4.6) 

(4.7) 

We have 

To examine more closely the range of allowed values of the integers u ( a o )  we 
consider the van Hove operators (see appendix 2) Fa corresponding to the variables 
r,. These operators act on the Hilbert space of the square integrable functions (with 
Liouville measure) on phase space: 

Fa$ = i(h/2.rr)Em[$]. (4.8) 

[ F a ,  F p ]  = -i(h/2r)f&Fy (4.9) 

As operators on this Hilbert space A they obey the commutation relations 

t no is an index of the fixed Cartan subalgebra %. 
f There is a fundamental unit of length for each simple component of the structure group, with corresponding 
independent units of charge. 
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and they generate the group representation in R :  

D l y ) : R + R :  $(P)’(D(Y)JI)(P)  = +(&-‘P), (4.10) 

where L, is the left group action on phase space defined in (3.13). 
In terms of the variables 5” and r, the Liouville measure is just the product of the 

bi-invariant Haar measure on the group manifold with the Cartesian measure in r, 
spacet. Since det[Ad([)] = 1, this measure is invariant under the group action and the 
representation is unitary. By general theorems on the representations of compact 
groups it follows that the representation is reducible to a sum of irreducible unitary 
representations, each corresponding to definite values of the Casimir operators of the 
Lie algebra. Within each irreducible representation the integers U( ao) will vary in a 
well defined range. 

5. Conclusion 

Thus, we have shown that the pre-quantisation condition (4.1) is sufficient to obtain 
charge quantisation. This is not surprising because we already knew that, in Klein’s 
quantum approach, the charge is quantised, and on the other hand the pre-quantisation 
condition (3.1) is precisely what is needed in the classical theory to obtain the 
quantisation condition of the Bohr-Wilson-Sommerfeld type as shown in appendix 2. 

It can also be shown that the mass is quantised in the following sense. The mass 
m’ (‘dressed’ mass) in the Lagrangian formalism is related to the parameter m of the 
theory by (1.34), which can be rewritten as mf2 = m2 - ( l/ac)2vmPr,rp. This is nothing 
other than the constraint (2.9) in the Hamiltonian formalism with mr2c2 = gijrirp Denot- 
ing C2= -(2.rr/h)2~?pr,rp$, we obtain 

m t 2 =  m2+(h/2.rrac)2C2 

with, for the cases considered in 0 4, 

c2 = Vem2 for U(1) 

C2 = $(+v3l2 

c2 = f[(fv3)2+ ( + ( f ) ” 2 V 8 ) 2 ]  

for SU(2) and 

for SU(3). 

In Klein’s approach one had m = 0 so that m’= (h/2.rrac)& 
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Appendix 1: Lagrangian and Hamiltonian formalism in non-canonical coordinates 

A system of coordinates x '  of points X of configuration space Q induces holonomic 
bases of tangent and cotangent spaces, TxQ and TZQ respectively, denoted by a l a x '  
and dx'. 

Let e, and E ,  denote a dual pair of anholonomic bases with structure functions 
defined by 

[e,, e01 = cl;p(X)e, ( A l . l a )  

or 

d e a  = -+c&(X)ep A E , .  (Al . l  b) 

The Lagrangian is defined as a function on the tangent bundle TQ with points 
X' = (X, U )  which can be given by the coordinates ( X I ,  U '  = dx' U )  or by the non- 
canonical coordinates ( X I ,  v u  = E "  - U )  and we have two different functions of these 
coordinates: 

Lagr(X') = Lc(x', U ' )  = L(x', U"). (A1.2) 

The momentum is given by 

pl =aL,/au' = p a  alax', ( A 1 . 3 ~ )  

or by 

r, =aL/ava = p -  e,. (Al.3 b) 

The Euler-Lagrange equations read 

dp,/dt  - aLc/ax' = 0 ( A 1 . 4 ~ )  

or 

dra/dt  + r,c&( X)  up - e, (L)  = 0 (A1.46) 

where U = dX/dt .  
The points X"= (X, p )  of phase space T*Q have canonical and non-canonical 

coordinates, (xi, pi)  and (xi, r,) respectively, with corresponding holonomic bases of 
TX4 T*Q)  and T$),( T*Q)  given by 

( A l S a )  

They are related by: 

and 

( A 1 . 6 ~ )  

(Al.66) 

(A1.70) 

(A1.76) 
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Useful anholonomic bases of Tx..( T * Q )  and T$,( T"Q)  are 

le,) = Ia/ax'),,e',(x) (A1.8a) 

lalare) = laIJro)nc (A1.8b) 

with dual 

( e U /  = Eai(X)(dX'/nc (Al .9a)  

(dra 1 = (drulnc. (Al.9 b)  

The symplectic potential, 1-form on T*Q, reads 

(6l=p,(dx ' l= r , ( E u I  (Al .  10) 

and the symplectic 2-form is obtained as 

C =  -d(6l=(dx ' l ,~(dp, l ,  

=(&,I h(dr,I+frpc$(X)(EeI A ( E ' ~ .  

(Al.11 a )  

(Al.11 b) 

Appendix 2. Pre-quantisation 

The pre-quantisation scheme of Kostant and Souriau (see, for example, Woodhouse 
1980) is a globalisation of the construction, due to van Hove (1951), of an isomorphism 
of the Lie algebra of the classical observables with the Poisson bracket operation, on 
the Lie algebra of symmetric operators on the Hilbert space of the square integrable 
functions on phase space with the commutator operation. 

Consider a principal U( 1) bundle E over a symplectic manifold S with its symplectic 
structure given by the 2-form U. Points e of E will be given in a local gauge by 
e + [x, exp(i&)], where x is a point of S. The bundle projection is denoted by 

P r : E +  S: e + x =  P r ( e ) .  (A2.1) 

The group U( 1) acts on the right on E and equivariant functions on E are defined such 
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that 

q [ e .  exp(ia)]  = exp(-ia)q[e].  

In a local gauge they have the following form 

Wx, 51 = exp(-it)$(x).  

A scalar product of such functions is defined by 

(A2.2) 

(A2.3) 

(A2.4) 

where pL is the Liouville measure on the 2n-dimensional phase space S and where h 
will be identified with Planck’s constant. The square integrable functions on E with 
the above product form a Hilbert space A. 

The bundle E has a connection given in a local gauge by 

(Y = -(2.ir/ h)B + d t  (A2.5) 

where B is a local symplectic potential so that the curvature of the connection equals 
the pull-back of the symplectic 2-form U: 

R = Pr*(2TU/h). (A2.6) 

Weil’s integrality condition states that for such a bundle to exist it is necessary and 
sufficient that the closed 2-form R / 2 n  should define an integral cohomology class 
of S. This condition is trivially satisfied when the symplectic manifold S is a cotangent 
bundle T*Q since E is then a trivial bundle and globally R = d a  is exact. It is however 
not trivial when S arises from the reduction of a cotangent bundle and it can be shown 
(Woodhouse 1980) that Weil’s integrality condition turns into the condition that 

l / h  B =  I ( C )  (A2.7) 

must be integer valued when C is a closed orbit belonging to a leaf of the foliation 
defined by the pre-symplectic 2-form U’  which is the restriction of (T to the constrained 
submanifold of S. 

A more pedestrian way to see how this condition arises is based upon the construc- 
tion (van Hove 1950) of a symmetric operator, associated with each classical observable, 
acting on R .  To A(x)  we associate A :  A+ R defined by 

(A2.8) 

where V is the covariant derivative of equivariant functions, defined by the connection 
(Y and where H ( A )  is the Hamiltonian vector field associated with A(x).  

In a local gauge where the function *[e] is given by $(x),  the operator A acts as 

(A2.9) 

A.\u = -i( h/2n-)VH(*,q + A.\u 

= -i( h /2n-)  H (  A)[ $1 + [A - (0, H(A))I$. 

Considering the eigenvalue equation 

A$ = a$. (A2.10) 

we notice that, on the orbits of the Hamiltonian vector field H ( A ) ,  the function A(x) 
remains constant and that 

-i(h/2.ir)H(A)[$1-(B9 H ( A ) ) $ = O  
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or d + / +  = 27~ie /  h, which yields 

(A2.11) 

It follows that for a closed orbit C( t ,  to) this implies the Bohr-Wilson-Sommerfeld 
condition. 

Appendix 3. O n  the ansatz for the metric and the action 

In order to implement spontaneous fibration in the sense that the metric be a possible 
solution of all of the (4+N)-dimensional Einstein’s equations, it is necessary to 
consider more general metrics than that of (1.12). This amounts to the non-Abelian 
generalisation (Cho and Freund 1975) of the Jordan-Thiry theory (see, for example, 
Lichnerowicz 1955) rather than of the original Kaluza-Klein. The metric 

g ( X )  =g, ( r r (X) )w’Owj+H, , (X)w ,Ow,  (A3.1) 

is still right invariant if 

H,p(X* Y) = H , ” ( X )  Ad,‘,(?) Ad”,(?), (A3.2) 

so that in a local gauge 

Hap(% 5) = hPU(X) Ad’”a(5) Ad”p(5). (A3.3) 

Due to this right invariance, the Riemannian curvature scalar % ( X )  will be still constant 
on each fibre. This implies that in a generalised Hilbert type action we may integrate 
over the group volume and obtain an effective action in four-dimensional space. It 
can be checked that the obtained equations of motion are the same as those to which 
the (4+ N)-dimensional Einstein’s equations reduce to when the ansatz metric (A3.1) 
is substituted in them. The Euler-Lagrange equations for the particle’s motion are? 

(A3.4) 

and 

dr,/du = 0. (A3.5) 

The pre-quantisation condition (3.1) will again yield the quantisation of the momenta 
r,, but the physical interpretation will be more complicated. For the Abelian Jordan- 
Thiry theory we refer to Lichnerowicz (1955). 

We have not considered such a generalisation mainly for simplicity reasons but 
also because we are somewhat reluctant to introduce N (  N +  1 ) / 2  additional scalar 
fields h,, (x)  whose interpretation as candidates for Higgs fields seems questionable. 
Naturally the theory we consider is then not an example of spontaneous fibration in 
the sense discussed above. 

+ T h e  field equations are discussed in Cho and Freund (1975), Orzalesi (1981) and in Coqueraux and 
Jadczyk (1983). 
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